生活
数据分析项目 、python数据分析项目
2023-04-17 00:55  浏览:51

数据分析包括哪些方面?

数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析

比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析

比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析

比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析

比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析

比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析

比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析

比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

通过面向企业业务场景提供一站式大数据分析解决方案,能够为企业在增收益、降成本、提效率、控成本等四个角度带来价值贡献。

1、增收益

最直观的应用,即利用数据分析实现数字化精准营销。通过深度分析用户购买行为、消费习惯等,刻画用户画像,将数据分析结果转化为可操作执行的客户管理策略,以***的方式触及更多的客户,以实现销售收入的增长。

下图为推广收支测算分析,为广告投放提供决策依据。

下图为渠道销量分析,为渠道支持提供数据支撑。

2、降成本

例如通过数据分析实现对财务和人力的管理,从而控制各项成本、费用的支出,实现降低成本的作用。

下图为生产成本分析,了解成本构成情况。

下图为期间费用预实对比分析,把控费用情况。

3、提效率

每个企业都会出具相关报表,利用数据分析工具,不懂技术的业务人员也能够通过简单的拖拉拽实现敏捷自助分析,无需业务人员提需求、IT人员做报表,大大提高报表的及时性,提高了报表的使用效率。

通过数据分析工具,能够在PC端展示,也支持移动看板,随时随地透视经营,提高决策效率。

4、控风险

预算是否超支?债务是否逾期?是否缺货了、断货了?客户的回款率怎么样?设备的运行是否正常?哪种产品是否需要加速生产以实现产销平衡?...其实,几乎每个企业都会遇到各种各样的风险问题。通过数据分析,能够帮助企业进行实时监测,对偏离了预算的部分、对偏离了正常范围的数值能够进行主动预警,降低企业风险。

下图为税负率指标,当综合税负率过高,可以实现提示和预警。

下图为重要指标预警,重点监控项目的毛利率。

常见的数据分析项目模型有哪些?

①目标客户的特征分析

目的:找准目标客户,目标受众,才能进行精细化运营

②目标客户的预测(相应、分类)模型

目的:预测个体相应的概率,展示变量之间的关系

③运营群体活跃度定义

活跃度的定义没有统一标准,一般是根据特定的业务场景和运营需求来量身定做的。

④用户路径分析

主要分析用户在网页/app上流转的规律和特点,发现频繁访问的路径模式,这些路径的发现可以有很多业务用途,包括提炼特定用户群体的主流路径、网页设计的优化和改版、特定群体的浏览特征等。

⑤交叉销售模型

交叉销售模型通过对用户历史消费数据的分析挖掘,找出有明显关联性质的商品组合,然后用不同的建模方法,去构建消费者购买这些关联商品组合的可能性模型,再用其中优秀的模型去预测新客户中购买特定组合商品的可能性。

⑥信息质量模型

信息质量模型师电子商务和网上交易的基本保障,其主要目的是确保商品基本信息的优质和高效,让买家更容易全面、清楚、高效的了解商品主要细节,让卖家更容易,更高效的展示自己的商品。

⑦服务保障模型

作用:为卖家提供有价值的服务去支持、保障卖家生意的发展。

⑧用户(买家、卖家)分层模型

分层模型是介于粗放式运营与基于个体概率预测模型之间的一种折中和过渡模型,其既兼顾了(相比较粗放运营而言)精细化的需要,又不需要(太多资源)投入到预测模型的搭建和维护中。

适合初学者的数据分析项目有哪些?

1.电影引荐体系项目

这个风趣的数据剖析项目(包含代码)的意图是树立一个引荐体系,向用户引荐电影。

让我们经过一个例子来理解这一点。您是否从前运用过像Netflix或Amazon Prime这样的在线流媒体渠道?如果是,那么您必定现已注意到,一段时间之后,这些渠道会根据您的门户喜爱开端向您引荐其他电影和电视节目。R编程中的该项目旨在帮助您了解引荐体系的工作原理。

2.运用机器学习进行客户细分

客户细分是一切面向客户的职业(B2C公司)最重要的运用之一。它运用机器学习的聚类算法,该算法使公司能够定位潜在的用户群,并且能够确认***客户。

它运用群集技能,公司能够经过这些技能辨认客户的几个细分市场,从而使他们能够针对特定广告系列的潜在用户群。客户细分还运用K-means聚类算法,该算法关于聚类未标记的数据集至关重要。

3. R中的情感剖析模型

几乎每个数据驱动的安排都运用情感剖析模型来确认其客户对公司产品的态度。

简而言之,这是计算地辨认和分类文本中表达的定见的过程,特别是为了确认消费者对特定产品或主题的态度是正面的,负面的还是中立的。您将不得不使用微小的文本包来剖析数据,并对数据集中现已存在的相应单词给出分数。

数据分析项目需要经历哪些阶段?

发现(目标定义):把业务问题转化为分析目标,制定初始假设。

数据准备:准备好分析沙盘,对分析沙盘中的数据执行ETL或ELT,转化成使用和分析的格式,逐步治理数据。

规划模型:了解数据之间的关系,确定模型的关键变量,和合适的分析模型。

模型建立:创建测试数据集,学习数据集,和生产数据集。运行模型,修正参数,测试模型的可用性,和对运行环境的要求。

沟通结果:评判是否达到***阶段的目标,是否满足业主的要求,是否可以上线运行。

实施:在生产环境部署和实施一个试点项目,应用项目模型。

关于数据分析项目和python数据分析项目的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

发表评论
0评