log函数导数公式
(loga(x))'=1/(xlna)
特别地(lnx)'=1/x
对数和对数函数是高中数学的重要内容,是高考的必考知识,需要同学们无条件地掌握。但是很多同学在高一时就没有掌握好对数知识,以至于成为整个高中阶段数学学习的绊脚石。
大多同学没学好对数知识,主要原因是觉得对数的公式太多,杂乱无章。其中要注意的是:
加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'
乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)
除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2
log函数对数注意
对数起初是为了解决天文学中的计算问题而产生的,因为实际应用性强,所以应用范围更广。特别是,在自然科学中,自然对数lnx应用更加普遍。
在高考中,对数问题比比皆是,尤其是函数与导数压轴题中,经常出现自然对数函数f(x)=lnx及复合函数。因而,对数函数是复习函数的重中之重。
log的导数公式是什么?
以a为底的X的对数 的导数是1/xlna,以e为底的是1/x
logax=lnx/lna
∫logaxdx=∫lnx/lnadx=1/lna*∫lnxdx
设lnx=t,则x=e^t
∫lnxdx=∫tde^t=te^t-∫e^tdt=te^t-e^t=xlnx-x
所以∫logaxdx=1/lna*∫lnxdx=(xlnx-x)/lna
扩展资料
常用导数公式:
1、y=c(c为常数) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna,y=e^x y'=e^x
4、y=logax y'=logae/x,y=lnx y'=1/x
5、y=sinx y'=cosx
6、y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x
9、y=arcsinx y'=1/√1-x^2
log函数的导数是什么?
以a为底的X的对数的导数是1/xlna,以e为底的是1/x。
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
相关信息:
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。
log函数的导数咋求的呢
利用定理:反函数的导数等于直接函数导数的倒数。
x=a^y,它的反函数是y=loga(x)
(a^y)'=a^y lna
(loga(x))'=1/(a^y)'=1/(a^ylna)=1/(xlna)
一般地,函数y=logaX(a0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x0。它实际上就是指数函数的反函数,可表示为x=***。因此指数函数里对于a的规定,同样适用于对数函数。
扩展资料:
对数函数y=logax 的定义域是{x 丨x0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x0且x≠1。
和2x-10 ,得到x1/2且x≠1,即其定义域为 {x 丨x1/2且x≠1}。
在一个普通对数式里 a0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等。)
参考资料来源:百度百科--对数函数
关于log求导和logx求导的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。