生活
有向图 、有向图的邻接表怎么画
2023-04-10 01:37  浏览:41

有向图的定义

有向图是一个二元组V,E,其中

1.V是非空集合,称为顶点集。

2.E是V×V的子集,称为弧集。

有向网和有向图的区别

有向网和有向图的区别:

1、有向网有权值,有向图没有权值。

2、图是一种数据结构,图由点集和边集组成,边集为点与点之间的连线的集合,边有方向,叫有向图,边无方向叫无向图,边有权值,就叫网。

数据结构问题 什么是有向图和无向图?

有向图在图中的边是有方向的,表现出来就是有个箭头指示方向,节点只能单向通信或传递消息,相当于单行道,无向图边没方向是双向的,边连接的两个节点有通路可以双向通信,类似于双行道。

无向图,边没有方向的图称为无向图。邻接矩阵则是对称的,且只有0和1,因为没有方向的区别后,要么有边,要么没边。

有向图,一个有向图D是指一个有序三元组(V(D),A(D),ψD),其中ψD为关联函数,它使A(D)中的每一个元素(称为有向边或弧)对应于V(D)中的一个有序元素(称为顶点或点)对。

扩展资料:

的G2和(c)图中的G3均是无向图,它们的顶点集和边集分别为:

V(G2)={v1,v2,v3,v4}

E(G2)={(vl,v2),(v1,v3),(v1,v4),(v2,v3),(v2,v4),(v3,v4)}

V(G3)={v1,v2,v3,v4,v5,v6,v7}

E(G3)={(v1,v2),(vl,v3),(v2,v4),(v2,v5),(v3,v6),(v3,v7)}

参考资料来源:百度百科-无向图

无向图和有向图的详细讲解

1、无向图,边没有方向的图称为无向图。邻接矩阵则是对称的,且只有0和1,因为没有方向的区别后,要么有边,要么没边。

2、有向图,一个有向图D是指一个有序三元组(V(D),A(D),ψD),其中ψD为关联函数,它使A(D)中的每一个元素(称为有向边或弧)对应于V(D)中的一个有序元素(称为顶点或点)对。

扩展资料

定义

针对有向图而言的,它是一个包含有向图的所有点的线性序列,且满足两个条件:a有向图的每个顶点只出现一次。b若存在一条从顶点A到顶点B的路径,那么在序列中顶点A应该出现在顶点B的前面。

邻接矩阵和关联矩阵定义:设D(V,E)是有向图,其中V={v1,v2,v2?vn},E={e1,e2,e3,?em}称A(D)=(aij)nxn是D的领接矩阵,其中aij是以vi为起始点,以vj为终点的边的条数。

若图D中无环,则称M(D)=(mij)nxm为关联矩阵。[i,j是下标,n是点的个数,m是边的数量注意:1.关联矩阵是针对边来说的,所以矩阵大小为n*m。

参考资料来源:百度百科—无向图

参考资料来源:百度百科—有向图

关于有向图和有向图的邻接表怎么画的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

发表评论
0评