海伦公式的推导过程是怎么样的?
海伦公式的推导过程如图:
海伦公式:
利用三角形的三条边的边长直接求三角形面积的公式。(a、b、c分别为三角形三条边的边长,p为三角形周长的一半)。
简介:
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。表达式为:S=√p(p-a)(p-b)(p-c),它的特点是形式漂亮,便于记忆。
相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以被称为海伦公式。中国秦九韶也得出了类似的公式,称三斜求积术。
公式意义:
海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
海伦定理是怎么回事呢?
海伦定理也叫海伦公式,是已知三角形三边长求其面积的公式,所求三角形形状任意,很好用
海伦定理
编辑本段原理简介中国宋代的数学家叶汇淳也提出了“三斜求积术”,它与海伦公式基本一样。
假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
——————————————————————————————————————————————
注1:"Metrica"(《论》)手抄本中用s作为半周长,所以
S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。
——————————————————————————————————————————————
由于任何n边的多边形都可以分割成(n-2)个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
编辑本段证明过程证明⑴
与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为
cosC = (a^2+b^2-c^2)/2ab
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
设p=(a+b+c)/2
则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
以上回答你满意么?
海伦公式是什么?
海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式。它是利用三角形的三条边的边长直接求三角形面积的公式。表达式为:S=√p(p-a)(p-b)(p-c)。
海伦公式的提出为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用海伦公式可以更快更简便的求出面积。
比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
发展简史:
古希腊的数学发展到亚历山大里亚时期,数学的应用得到了很大的发展,其突出的一点就是三角术的发展,在解三角形的过程中,其中一个比较难的问题是如何利用三角形的三边直接求出三角形面积。
这个公式是由古希腊数学家阿基米德得出的,但人们常常以古希腊的数学家海伦命名这个公式,称此公式为海伦公式,因为这个公式最早出现在海伦的著作《测地术》中,并在海伦的著作《测量仪器》和《度量数》中给出证明。
中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它完全与海伦公式等价,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平。
以上内容参考:百度百科-海伦公式
海伦公式最简单证明
海伦公式最简单证明是在△ABC中,角A、B、C所对的边分别为a、b、c,△ABC的面积为S,则S=√p(p-a)(p-b)(p-c)。
海伦公式是利用三角形的三条边的边长直接求三角形面积的公式。它的特点是形式漂亮,便于记忆。相传这个公式最早是由古希腊数学家阿基米德得出的,而因为这个公式最早出现在海伦的著作《测地术》中,所以被称为海伦公式。中国秦九韶也得出了类似的公式,称三斜求积术。
海伦公式是由古希腊数学家阿基米德得出的,但人们常常以古希腊的数学家海伦命名这个公式,称此公式为海伦公式,因为这个公式最早出现在海里的著作《测地术》中,并在海伦的著作《测量仪器》和《度量数》中给出证明。
中国宋代的数学家秦九韶在1247年独立提出了“三斜求积术”,虽然它与海伦公式形式上有所不同,但它完全与海伦公式等价,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平。
海伦定理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于海伦定理公式、海伦定理的信息别忘了在本站进行查找喔。