生活
平面向量平行公式 、平面向量平行公式坐标公式
2023-04-07 01:44  浏览:38

平面向量的垂直和平行公式

两个向量a,b平行:a=λb (b不是零向量);两个向量垂直:数量积为0,即 a•b=0

坐标表示:a=(x1,y1),b=(x2,y2)

a//b当且仅当x1y2-x2y1=0,a⊥b当且仅当x1x2+y1y2=0

平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。

扩展资料:

一、相关概念

零向量:长度等于0的向量叫做零向量,记作0。

相等向量:长度相等且方向相同的向量叫做相等向量。

平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量。

单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示。

相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

二、数乘运算性质

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。当λ0时,λa的方向和a的方向相同,当λ0时,λa的方向和a的方向相反,当λ = 0时,λa=0。

用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)

设λ、μ是实数,那么满足如下运算性质:

(λμ)a= λ(μa)

(λ + μ)a= λa+ μa

λ(a±b) = λa± λb

(-λ)a=-(λa) = λ(-a)

|λa|=|λ||a|

参考资料来源:百度百科-平面向量

向量平行和垂直的公式都是什么着

1、向量垂直公式

向量a=(a1,a2),向量b=(b1,b2)

a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb(λ是一个常数)

a垂直b:a1b1+a2b2=0

2、向量平行公式

向量a=(x1,y1),向量b=(x2,y2)

x1y2-x2y1=0

a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0

几何表示

向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。

以上内容参考:百度百科-向量

平面向量平行公式

平行的公式为若a,b是两个向量:a=(x,y)b=(m,n);则a⊥b的充要条件是a·b=0,即(xm+yn)=0。

向量a=(x1,y1),向量b=(x2,y2),x1y2-x2y1=0。a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0。

“在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。?若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0”

平行向量:方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其方向不确定。我们规定:零向量与任一向量平行。平行于同一直线的一组向量是共线向量。

向量平行公式

a×b=xn-ym=0

向量垂直,平行的公式为:

若a,b是两个向量:a=(x,y)b=(m,n);

则a⊥b的充要条件是a·b=0,即(xm+yn)=0;

向量平行的公式为:a//b→a×b=xn-ym=0;

向量的用途

向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到;

“向量”一词来自力学、解析几何中的有向线段。***使用有向线段表示向量的是英国大科学家牛顿。

关于平面向量平行公式和平面向量平行公式坐标公式的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

发表评论
0评