研究表明,铸造残留应力与铸件冷却过程中各部分的温差及铸造合金的弹性模量成正比。过去很长的时期里,人们认为铸造合金在冷却过程中存在着弹塑性转变温度,并认为铸铁的弹塑性转变温度为400℃左右。基于这种认识,去应力退火的加热温度应是400℃。但是,实践证明这个加热温度并不理想。近期的研究表明,合金材料不存在弹塑性转变温度,即使处于固液共存状态的合金仍具有弹性。
粘土砂型和表面烘干砂型的区别粘土砂型可分为湿型、干砂型和表面烘干砂型。三者之间的主要差别在于:湿型是造好的砂型不经烘干,直接浇入高温金属液体;干砂型是在合箱和浇注前将整个砂型送入窑中烘干;表面烘干砂型只在浇注前对型腔表层用适当方法烘干 (一般5~10mm,大件20mm以上)。 目前,湿型砂是使用 广泛的、 方便的造型方法,大约占所有砂型使用量的60~70%,但是这种方法还不适合很大或很厚实的铸件。表面烘干型与干型比,可节省烘炉,节约燃料和电力,缩短生产周期,所以曾在中型和较大型铸铁件的生产中推广过。通常采用较粗砂粒(使有高的透气性),加入较多粘土和水分,有时还在型砂中加1~2%的木屑(提高抗夹砂结疤能力),其型腔表面 涂敷涂料。 干型主要用于重型铸铁件和某些铸钢件,为了防止烘干时铸型开裂,一般在加入膨润土的同时还加入普通粘土。干型主要靠涂料铸件表面质量。其型砂和砂型的质量比较容易控制,但是砂型生产周期长,需要专门的烘干设备,铸件尺寸精度较差,因此,近些年的干型,包括表面烘干的粘土政型已大部分被化学粘结的自硬砂型所取代。
CO2水玻璃砂产生夹砂形成的原因分析CO2水玻璃砂产生夹砂形成的原因分析:CO2水玻璃砂不易形成夹砂,为什么产生夹砂呢?从夹砂形成的机理可以看出,在以石英砂颗粒为的铸造条件下,型腔表面砂层的热膨胀和铸型内的水分迁移是形成夹砂的外因。砂层膨胀造成的热应力是表面拱起的动力,砂层的容让变形能力和层与层之间的连接强度是表面拱起的阻力。从这个意义上讲,夹砂产生的原因是摇枕、侧架浇口侧热作用强,型砂热膨胀大,容让变形能力差,表面砂层与里层的连接强度不足和型砂中水分高(铸型吹干不足)。从夹砂形成的时期看,在铸型尚未充满的时期。从这个意义上讲,夹砂产生的时期与铸型的吹干程度有紧密的联系:吹干不透,干强度差,砂型容易缩短夹砂发生临界时间,从发生夹砂缺陷的情况看,夹砂发生在浇口引入处的平面距离型腔界面较近的表层或较深层,说明金属液的热作用强,型砂的热膨胀大。这主要取决于原砂的化学组成的性质和粒度的级配。同时,铸型在二氧化碳硬化时,透气性差,脱水不好,水分含量较高,强度不足;透气性不好,导热性差,水分饱和凝聚区离铸型界面很近或较近,易缩短夹砂临界时间。