so中导出符号与非导出符号怎么查看
什么是导出符号?
符号,是软件链接过程的用到的术语。
我们编写自己的软件生成目标文件,通常情况下,只有自己的目标文件是不够的。
比如我们用c++编写的程序,必然要与C++的运行时库链接在一起才能工作,否
则我们在代码中使用的fopen或者std::cout之类的符号要到哪里去找。
在链接的过程中,相当于是让目标文件之间镶嵌到一起,因此最重要的是找到精
确的接入点,这就是符号。
ldd命令:
ldd命令用于输出可执行文件或者库文件所依赖的共享库列表。
nm命令:
nm命令用于输出可执行文件或者库文件的符号表。
readelf命令:
readelf命令用来显示一个或者多个elf格式的目标文件的信息,可以通过它的选项来控制显示哪些信息。
常用的选项:
-s --syms --symbols 显示符号表段中的项(如果有的话)。
-d --dynamic 显示动态段的信息。
1
2
1
2
ar命令:
ar命令可以用来创建、修改库,也可以从库中提出单个模块。
objdump命令:
objdump命令是用查看目标文件或者可执行的目标文件的构成的gcc工具。
常用选项:
-T --dynamic-syms
1
1
显示文件的动态符号表入口,仅仅对动态目标文件意义,比如某些共享库。它显示的信息类似于 nm -D|–dynamic 显示的
如何使用linux-gnu-readelf查看头文件
可执行文件里都是机器码加一些调试信息,看不到头文件信息的。
你说的生成包含头文件的列表确实是有,是gcc的选项,‘-M’,必须在编译时给出。比如说你要看temp.c应用了什么头文件,可以如下使用:
$ gcc -M -c temp.c
temp.o: temp.c /usr/include/stdio.h /usr/include/features.h
/usr/include/sys/cdefs.h /usr/include/bits/wordsize.h
/usr/include/gnu/stubs.h /usr/include/gnu/stubs-32.h
/usr/lib/gcc/i386-redhat-linux/4.1.1/include/stddef.h
/usr/include/bits/types.h /usr/include/bits/typesizes.h
/usr/include/libio.h /usr/include/_G_config.h /usr/include/wchar.h
/usr/include/bits/wchar.h /usr/include/gconv.h
/usr/lib/gcc/i386-redhat-linux/4.1.1/include/stdarg.h
/usr/include/bits/stdio_lim.h /usr/include/bits/sys_errlist.h
它还有几个子选项,-MM等,可以自己man gcc看看。
Mac上使用objdump和readelf
首先,mac系统下的文件格式是mach-o,并不支持objdump和readelf;
退而求其次,使用 brew update brew install binutils ,然后用 greadelf 和 gobjdump ;
注意,使用使用 brew update brew install binutils 会有如下提示:
andriod系统里怎么使用readelf命令
readelf option(s) elf-file(s)
[功能]
用于显示elf格式文件的信息。
[描述]
readelf用来显示一个或者多个elf格式的目标文件的信息,可以通过它的选项来控制显示哪些信息。这里的elf-file(s)就表示那些被检查的文件。可以支持32位,64位的elf格式文件,也支持包含elf文件的文档(这里一般指的是使用ar命令将一些elf文件打包之后生成的例如lib*.a之类的“静态库”文件)。
这个程序和objdump提供的功能类似,但是它显示的信息更为具体,并且它不依赖BFD库(BFD库是一个GNU项目,它的目标就是希望通过一种统一的接口来处理不同的目标文件),所以即使BFD库有什么bug存在的话也不会影响到readelf程序。
运行readelf的时候,除了-v和-H之外,其它的选项必须有一个被指定。
ELF文件类型:
种类型的ELF文件:
a)可重定位文件:用户和其他目标文件一起创建可执行文件或者共享目标文件,例如lib*.a文件。
b)可执行文件:用于生成进程映像,载入内存执行,例如编译好的可执行文件a.out。
c)共享目标文件:用于和其他共享目标文件或者可重定位文件一起生成elf目标文件或者和执行文件一起创建进程映像,例如lib*.so文件。
ELF文件作用:
ELF文件参与程序的连接(建立一个程序)和程序的执行(运行一个程序),所以可以从不同的角度来看待elf格式的文件:
a)如果用于编译和链接(可重定位文件),则编译器和链接器将把elf文件看作是节头表描述的节的集合,程序头表可选。
b)如果用于加载执行(可执行文件),则加载器则将把elf文件看作是程序头表描述的段的集合,一个段可能包含多个节,节头表可选。
c)如果是共享文件,则两者都含有。
ELF文件总体组成:
elf文件头描述elf文件的总体信息。包括:
系统相关,类型相关,加载相关,链接相关。
系统相关表示:elf文件标识的魔术数,以及硬件和平台等相关信息,增加了elf文件的移植性,使交叉编译成为可能。
类型相关就是前面说的那个类型。
加载相关:包括程序头表相关信息。
链接相关:节头表相关信息。
项(分别以长格式和短格式给出了):
-a
--all 显示全部信息,等价于 -h -l -S -s -r -d -V -A -I.
-h
--file-header 显示elf文件开始的文件头信息.
-l
--program-headers
--segments 显示程序头(段头)信息(如果有的话)。
-S
--section-headers
--sections 显示节头信息(如果有的话)。
-g
--section-groups 显示节组信息(如果有的话)。
-t
--section-details 显示节的详细信息(-S的)。
-s
--syms
--symbols 显示符号表段中的项(如果有的话)。
-e
--headers 显示全部头信息,等价于: -h -l -S
-n
--notes 显示note段(内核注释)的信息。
-r
--relocs 显示可重定位段的信息。
-u
--unwind 显示unwind段信息。当前只支持IA64 ELF的unwind段信息。
-d
--dynamic 显示动态段的信息。
-V
--version-info 显示版本段的信息。
-A
--arch-specific 显示CPU构架信息。
-D
--use-dynamic 使用动态段中的符号表显示符号,而不是使用符号段。
-x number or name
--hex-dump=number or name 以16进制方式显示指定段内内容。number指定段表中段的索引,或字符串指定文件中的段名。
-w[liaprmfFsoR] or
--debug-dump[=line,=info,=a***rev,=pubnames,=aranges,=macro,=frames,=frames-interp,=str,=loc,=Ranges]
显示调试段中指定的内容。
-I
--histogram 显示符号的时候,显示bucket list长度的柱状图。
-v
--version 显示readelf的版本信息。
-H
--help 显示readelf所支持的命令行选项。
-W
--wide 宽行输出。
@file 可以将选项集中到一个文件中,然后使用这个@file选项载入。
[举例]
先给出如下例子:
1,对于可执行文件形式的elf格式文件:
1)查看可执行程序的源代码如下:
[quietheart@lv-k cppDemo]$ cat main.cpp
#include iostream
using std::cout;
using std::endl;
void my_print();
int main(int argc, char *argv[])
{
my_print();
cout"hello!"endl;
return 0;
}
void my_print()
{
cout"print!"endl;
}
2)编译如下:
[quietheart@lv-k cppDemo]$ g++ main.cpp -o main
[quietheart@lv-k cppDemo]$ g++ -g main.cpp -o main.debug
3)编译之后,查看生成的文件:
[quietheart@lv-k cppDemo]$ ls -l
总计 64
-rwxr-xr-x 1 quietheart quietheart 6700 07-07 18:04 main
-rw-r--r-- 1 quietheart quietheart 201 07-07 18:02 main.cpp
-rwxr-xr-x 1 quietheart quietheart 38932 07-07 18:04 main.debug
这里,main.debug是带有调试信息的可执行文件,main是一般的可执行文件。
2,对于库文件形式的elf格式文件:
1)查看库的源代码如下:
//myfile.h
#ifndef __MYFILE_H
#define __MYFILE_H
void printInfo();
#endif
//myfile.cpp
#include "myfile.h"
#include iostream
using std::cout;
using std::endl;
void printInfo()
{
cout"hello"endl;
}
2)编译如下:
[quietheart@lv-k bak]$ g++ -c myfile.cpp
[quietheart@lv-k bak]$ g++ -shared -fPCI -o libmy.so myfile.o
[quietheart@lv-k bak]$ ar -r libmy.a myfile.o
ar: creating libmy.a
3)编译之后,查看生成的文件:
[quietheart@lv-k bak]$ ls -l
总计 44
-rw-r--r-- 1 quietheart quietheart 2154 07-08 16:14 libmy.a
-rwxr-xr-x 1 quietheart quietheart 5707 07-08 16:08 libmy.so
-rwxr-xr-x 1 quietheart quietheart 117 07-08 16:06 myfile.cpp
-rwxr-xr-x 1 quietheart quietheart 63 07-08 16:08 myfile.h
-rw-r--r-- 1 quietheart quietheart 2004 07-08 16:08 myfile.o
libmy.a libmy.so myfile.cpp myfile.h myfile.o
这里,分别生成目标文件myfile.o,共享库文件libmy.so,和静态库文件libmy.a。
ELF文件详解
姓名:罗学元 学号:21181214375 学院:广州研究院
【嵌牛导读】什么是ELF文件
【嵌牛鼻子】什么是ELF文件
【嵌牛提问】什么是ELF文件,它有哪些部分组成、每部分包含哪些信息
ELF文件分为四个部分:elf header,program header table,section header table,dynamic symbol table。其中节头表(section header table) 和 段头表(program header table) 中用到的数据相同,只是组织方式不同。
一、ELF header
每个ELF文件都必须存在一个ELF_Header,这里存放了很多重要的信息用来描述整个文件的组织,如: 版本信息,入口信息,偏移信息等,程序执行也必须依靠其提供的信息:
数据结构如下:
e_xxx 和上面对应表如下图:
其中数据类型如下:
二、Program header table 程序头表
存储so文件运行时所需要的信息,这部分信息会直接被linker使用,用于加载so文件,告诉系统如何在内存中创建映像,在图中也可以看出来,有程序头部表才有段,有段就必须有程序头部表,其中存放各个段的基本信息(包括地址指针)
节到段的映射:
链接视图是以节(section)为单位,执行视图是以段(segment)为单位。链接视图就是在链接时用到的视图,而执行视图则是在执行时用到的视图。上图左侧的视角是从链接来看的,右侧的视角是执行来看的。
段(Segment): 就是将文件分成一段一段映射到内存中,段中通常包括一个或多个节区。
那么为什么需要节和段两种视图? 当ELF文件被加载到内存中后,系统会将多个具有相同权限(flg值)section合并一个segment。操作系统往往以页为基本单位来管理内存分配,一般页的大小为4096B,即4KB的大小。同时,内存的权限管理的粒度也是以页为单位,页内的内存是具有同样的权限等属性,并且操作系统对内存的管理往往追求高效和高利用率这样的目标。ELF文件在被映射时,是以系统的页长度为单位的,那么每个section在映射时的长度都是系统页长度的整数倍,如果section的长度不是其整数倍,则导致多余部分也将占用一个页。而我们从上面的例子中知道,一个ELF文件具有很多的section,那么会导致内存浪费严重。这样可以减少页面内部的碎片,节省了空间,显著提高内存利用率。
readelf -S xxx # 用来查看可执行文件中有哪些section,如下图:
readelf --segments xxx # 可以查看该文件的执行视图,下图红框部分为上图的节信息在段中的显示:
最后加载进内存的只有program header table 程序头表里的load段,其他都只是描述信息,加载过程中用到,但是最后加载进去内存的只有load段。
三、Section header table 节头部表
类似与程序头部表,但与其相对应的是节区(Section);节区(Section): 将文件分成一个个节区,每个节区都有其对应的功能,如符号表,哈 希 表 等。
.relname和.relaname: 010Editor打开so,展现形式为下图,.rel.dyn 和 .rel.plt ,是用来重定向dyn和plt的,也就是静态情况下,存放偏移值,如果进行动态调试的时候,就会加上基址变成绝对地址(重定向)。
下面第二张图中,左边红框就是偏移值,右边红框只要把基址加进来,就是绝对地址,把基址加进来的过程就是重定向的过程:
.plt 程序链接表,用于做映射关系,拿到依赖so的绝对地址,做重定向的:
四、Dynamic symbol table
这里是符号表,也就是会用到的所有函数名称表,包括自己写的函数和依赖的系统so中的函数,到时候.plt会对这部分重定向 。
readelf的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于readelfexe、readelf的信息别忘了在本站进行查找喔。