7分钟前 沈阳数据治理标准公司询价咨询「北京派客动力」[北京派客动力a1d1358]内容:
数据治理数字化转型
谈谈数字化转型,各位可根据现状对号入座。目前大的背景是业务拉动数据的中级阶段,但未来的方向一定是数据拓展业务。数字化转型道远,没有谁敢说自己完成了数字化转型,因为业务在变、数据在变、组织在变、流程在变、法律法规在变,一切都在变。在这条路上应该以终为始,走一步看三步,因为极有可能当你走到第三步的时候却发现步走错了。
数据治理数据分类
大家都知道我们擅长做数据分类分级,对于我们来说,这确实是一个老生常谈的问题,但在整个数据安全领域中,它却又是般的存在,不得不提。散落在企业各个存储角落的那些数据,在业务维度上,都属于哪个业务域、哪条业务线、哪个业务系统、哪个业务项、哪个业务分类,这些被贴上了业务标签的数据,将更容易从业务视角进行解读,为数据分级打下根基。从数据资产化的角度来看,数据分类可以独立存在,然而数据分级在某种程度上来说,需要依赖于数据分类的结果,因为数据分类令数据有了明确的业务属性。
数据治理数据安全
近年来,关于数据安全问题已然成为世界性的热门话题。对此,各国对网络安全、敏感数据保护、个人隐私保护等出台了一系列的法律、法规和行业政策,并不断的加以完善,有效对其不轨行为进行了法律层面的约束。
同时,随着信息技术时代的不断发展,大量的信息、数据贯穿整个企业多个环节,为保护企业内部数据资产安全,如何解决数据流通时所带来的安全威胁成为重中之重。
数据治理数据安全保护策略
随着各行各业加速数字化转型风口下,数据安全厂商所提供的性的数据隐私保护产品和技术、方案等也各不相同。而数据脱敏技术和产品已然成为数据安全保护的常规防护手段之一。在开发、测试以及数据外发共享等环境下被广泛应用。但仅仅能够对敏感数据进行一系列的变形、遮蔽、加密等手段处理是远远不够的,想要真正意义上实现客户安全、便捷的使用数据,还要有完善的架构体系以及的技术做支撑。否则将会在实施过程中给客户带来一系列的问题与麻烦。